Abstract

Reliable integration of organometallic halide perovskite in photovoltaic devices is critically limited by its low stability in humid environments. Furthermore, additives to increase the mobility in the hole transport material (HTM) have deliquescence and hygroscopic properties, which attract water molecules and result in accelerated degradation of the perovskite devices. In this study, a double cantilever beam (DCB) test is used to investigate the effects of additives in the HTM layer on the perovskite layer through neatly delaminating the interface between the perovskite and HTM layers. Using the DCB test, the bottom surface of the HTM layers is directly observed, and it is found that the additives are accumulated at the bottom along the thickness (i.e., through-plane direction) of the films. It is also found that the additives significantly decrease the adhesion at the interface between the perovskite and HTM layers by more than 60% through hardening the HTM films. Finally, the adhesion-based degradation mechanism of perovskite devices according to the existence of additives is proposed for humid environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.