Abstract
A mechanical device inspired by the pistol shrimp snapper claw was developed. This technology features a claw characterized by a periodic opening/closing motion, at a controlled frequency, capable of producing oscillating flows at transitional Reynolds numbers. An innovative method was also proposed for determining the corrosion rate of carbon steel samples under oscillating acidic streams (aqueous solution of HCl). By employing very-thin carbon steel specimens (25 μm thickness), with one side coated with Zn and not exposed to the stream, it became possible to electrochemically sense the Zn surface once the steel sample was perforated, thus providing the average dissolution rate into the most relevant pit on the steel surface. Furthermore, a laser light positioned beneath the metallic sample, along with a camera programmed to periodically capture images of the steel surface, facilitated the accurate counting of the number of newly formed pits. The system consisting of the thin steel sample and the Zn coating can be seen as a type of corrosion sensor. Furthermore, the proposed laser illumination method allows corroborating the electrochemical detection of pits and also establishing their location. The techniques crafted in this study pave the way for developing alternative corrosion sensors that boast appealing attributes: affordability, compactness, and acceptable accuracy to detect in time and space localized damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.