Abstract

Despite the very high theoretical energy density, Li-S batteries still need to fundamentally overcome the sluggish redox kinetics of lithium polysulfides (LiPSs) and low sulfur utilization that limit the practical applications. Here, highly active and stable cathode, nitrogen-doped porous carbon nanotubes (NPCTs) decorated with NixCo1-xS2 nanocrystals are systematically synthesized as multi-functional electrocatalytic materials. The nitrogen-doped carbon matrix can contribute to the adsorption of LiPSs on heteroatom active sites with buffering space. Also, both experimental and computation-based theoretical analyses validate the electrocatalytic principles of co-operational facilitated redox reaction dominated by covalent-site-dependent mechanism; the favorable adsorption-interaction and electrocatalytic conversion of LiPSs take place subsequently by weakening sulfur-bond strength on the catalytic NiOh 2+-S-CoOh 2+ backbones via octahedral TM-S (TM = Ni, Co) covalency-relationship, demonstrating that fine tuning of CoOh 2+ sites by NiOh 2+ substitution effectively modulates the binding energies of LiPSs on the NixCo1-xS2@NPCTs surface. Noteworthy, the Ni0.261Co0.739S2@NPCTs catalyst shows great cyclic stability with a capacity of up to 511 mAh g-1 and only 0.055% decay per cycle at 5.0 C during 1000 cycles together with a high areal capacity of 2.20 mAh cm-2 under 4.61mg cm-2 sulfur loading even after 200 cycles at 0.2 C. This strategy highlights a new perspective for achieving high-energy-density Li-S batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.