Abstract

Dissolvable polymeric microneedles (DPMNs) have emerged as a powerful technology for the localized treatment of diseases, such as melanoma. Herein, we fabricated a DPMN patch containing a potent enzyme-nanozyme composite that transforms the upregulated glucose consumption of cancerous cells into lethal reactive oxygen species via a cascade reaction accelerated by endogenous chloride ions and external near-infrared (NIR) irradiation. This was accomplished by combining glucose oxidase (Gox) with a NIR-responsive chloroperoxidase-like copper sulfide (CuS) nanozyme. In contrast with subcutaneous injection, the microneedle system highly localizes the treatment, enhancing nanomedicine uptake by the tumor and reducing its systemic exposure to the kidneys and spleen. NIR irradiation further controls the potency and toxicity of the formulation by thermally disabling Gox. In a mouse melanoma model, this unique combination of photothermal, starvation, and chemodynamic therapies resulted in complete tumor eradication (99.2 ± 0.8 % reduction in tumor volume within 10 d) without producing signs of systemic toxicity. By comparison, other treatment combinations only resulted in a 42–76.5 % reduction in tumor growth. The microneedle patch design is therefore not only highly potent but also with regulated toxicity and improved safety.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call