Abstract
The relationship between activation of NADPH-oxidase, alterations in membrane potential and triggering of Ca2+ fluxes in human phagocytes has been investigated using neutrophils from four subjects with chronic granulomatous disease (CGD). Cytosolic Ca2+ and membrane potential were measured by spectrofluorimetry, and net efflux and influx of Ca2+ by radiometric procedures. Exposure of normal neutrophils to the chemotactic tripeptide, N-formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP; 1 microM) was accompanied by an abrupt increase in cytosolic Ca2+ coincident with membrane depolarization and efflux of the cation. These events terminated at around 30 s after the addition of FMLP and were followed by membrane repolarization and store-operated influx of Ca2+, both of which were superimposable and complete after about 5 min. Activation of CGD neutrophils was also accompanied by an increase in cytosolic Ca2+, which, in spite of an efficient efflux response, was prolonged in relation to that observed in normal cells. This prolonged increase in cytosolic Ca2+ in activated CGD neutrophils occurred in the setting of trivial membrane depolarization and accelerated influx of Ca2+, and was associated with hyperactivity of the cells according to excessive release of elastase and increased activity of phospholipase A2. Treatment of CGD neutrophils with the type 4 phosphodiesterase inhibitor, rolipram (1 microM) restored Ca2+ homeostasis and attenuated the increase in elastase release. These findings support the involvement of NADPH-oxidase in regulating membrane potential and Ca2+ influx in activated neutrophils, and may explain the disordered inflammatory responses and granuloma formation which are characteristic of CGD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.