Abstract

Modern bridge construction towards a higher degree of low carbonization and assembly has been the general trend, while developing and broadening the low-carbon and assembled-oriented Accelerated Bridge Construction (ABC) technology can better realize the trade-offs between construction quality, efficiency, cost and sustainability. In the current mainstream ABC technologies such as precast-assembled concrete bridge and assembled steel bridge schemes, it is difficult to achieve an excellent balance between the above multicriterion trade-offs. To this end, this paper proposes a novel low-carbon and assembled composite bridge scheme as an innovative case of ABC technology based on a 26.7 km-length urban viaduct project in China with urgent environmental protection and assembly demands. Construction sustainability, the comprehensive economy and low-carbon performance are well balanced by the collaborative application of new steel–concrete composite structures, the rapid assembly interface design and low-carbon material technologies. The proposed scheme has been applied to a completed real-scale bridge, and the whole construction process only experienced 105 days of effective time, accompanied with slight environmental interference and construction noise and a small amount of labor and equipment input. In addition, the safety of the bridge, the rationality of the design concept and the calculation method have been verified by the static and dynamic loading tests of the real-scale bridge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.