Abstract

In order to rapidly adapt to the evolving climate and sustainably nourish the growing global population, plant breeders are actively investigating more efficient strategies to enhance crop yields. In this study, we present the development of a bread wheat mapping population and backcross breeding program, serving as a valuable genetic resource for mapping the effects of different alleles on trait performance. We employed innovative methodologies to rapidly introgress traits into the bread wheat cultivar. Specifically, we utilized two parents, including Tosunbey x Tahirova2000, in a recombinant inbred line population, in addition, a backcross strategy was applied with line 148 (obtained by crossing Tosunbey x Tahirova2000 with high gluten quality) as the recipient parent of the Nevzatbey cv., known for its awnless feature. The two most important applications of the rapid breeding method are extending the light period and breaking dormancy in early harvested seeds. Both applications were successfully implemented in our study. Our vegetation periods ranging from approximately 50–60 days. Additionally, an early genotype in our developed population was harvested in 40 days. Considering that the genotype underwent a 15-day vernalization period, the generation cycle, including vernalization, drying, and refrigeration, was completed in a total of 64 days. Notably, we employed not only biochemical markers for selection but also incorporated the rapid generation advance technology known as ‘speed breeding’, allowing us to develop BC5F1 within a span of two years. We posit that this approach proves instrumental in swiftly transferring genes for multiple target traits into adapted wheat cultivars or in pyramiding desirable traits within elite breeding material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.