Abstract

Although biodegradable polymer/ceramic composite scaffolds can overcome the limitations of conventional ceramic bone substitutes, the osteogenic potential of these scaffolds needs to be further enhanced for efficient bone tissue engineering. In this study, bonelike apatite was efficiently coated onto the scaffold surface by using polymer/ceramic composite scaffolds instead of polymer scaffolds and by using an accelerated biomimetic process to enhance the osteogenic potential of the scaffold. The creation of bonelike, apatite-coated polymer scaffold was achieved by incubating the scaffolds in simulated body fluid (SBF). The apatite growth on porous poly(D,L-lactic-co-glycolic acid)/nanohydroxyapatite (PLGA/ HA) composite scaffolds was significantly faster than on porous PLGA scaffolds. In addition, the distribution of coated apatite was more uniform on PLGA/HA scaffolds than on PLGA scaffolds. After a 5-day incubation period, the mass of apatite coated onto PLGA/HA scaffolds incubated in 5 x SBF was 2.3-fold higher than PLGA/HA scaffolds incubated in 1 x SBF. Furthermore, when the scaffolds were incubated in 5 x SBF for 5 days, the mass of apatite coated onto PLGA/HA scaffolds was 4.5-fold higher than PLGA scaffolds. These results indicate that the biomimetic apatite coating can be accelerated by using a polymer/ceramic composite scaffold and concentrated SBF. When seeded with osteoblasts, the apatite-coated PLGA/HA scaffolds exhibited significantly higher cell growth, alkaline phosphatase activity, and mineralization in vitro compared to the apatite-coated PLGA scaffolds. Therefore, the apatite-coated PLGA/HA scaffolds may provide enhanced osteogenic potential when used as scaffold for bone tissue engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.