Abstract

In this work we explore a new cosmological solution for an universe filled with one dissipative fluid, described by a barotropic EoS $p = \omega \rho$, in the framework of the full Israel-Stewart theory. The form of the bulk viscosity has been assumed of the form $\xi = \xi_{0}\rho^{1/2}$. The relaxation time is taken to be a function of the EoS, the bulk viscosity and the speed of bulk viscous perturbations, $c_{b}$. The solution presents an initial singularity, where the curvature scalar diverges as the scale factor goes to zero. Depending on the values for $\omega$, $\xi_{0}$, $c_{b}$ accelerated and decelerated cosmic expansion can be obtained. In the case of accelerated expansion, the viscosity drives the effective EoS to be of quintessence type, for the single fluid with positive pressure. Nevertheless, we show that only the solution with decelerated expansion satisfies the thermodynamics conditions $dS/dt > 0$ (growth of the entropy) and $d^{2}S/dt^{2} < 0$ (convexity condition). We show that an exact stiff matter EoS is not allowed in the framework of the full causal thermodynamic approach; and in the case of a EoS very close to the stiff matter regime, we found that dissipative effects becomes negligible so the entropy remains constant. Finally, we show numerically that the solution is stable under small perturbations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.