Abstract

Anaerobic decolorization of azo dyes has been evidenced to be an economical and effective pretreatment method, but its generally limited by the low decolorization efficiency, especially for biodecolorization sulfonated azo dyes. In this study, magnetite nanoparticles (MNPs) as a conductive material, was coupled into anaerobic system for enhancing decolorization of sulfonated azo dyes, i.e., methyl orange (MO), with technology feasibility and system stability emphasized. The results showed that the anaerobic decolorization capacity was significantly enhanced with addition of MNPs (at dose of 1 g/L), where the efficiencies of MO decolorization and aromatic amines formation were as high as 97.28 ± 0.78 % and 99.44 ± 0.25%, respectively. In addition, both electron transport system activity and sludge conductivity were also significantly improved, suggesting that a direct extracellular electron transfer had been successfully established via MNPs as RMs. Under continuous-flow experiments, addition of MNPs not only improved anaerobic system resistance environmental stress (e.g., high MO concentration, low hydraulic retention time and low co-substance concentration) but also accelerated sludge granulation. The relative abundance of functional species related to dissimilatory iron reduction and MO biodegradation were also enriched under MNPs stimulation. The observed long-term stable performance suggests the full-scale application potential of this coupled system for treatment of wastewater containing sulfonated azo dyes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call