Abstract

Missense mutations in two related genes, termed presenilin 1 ( PS1) and presenilin 2 ( PS2), cause dementia in a subset of early-onset familial Alzheimer's disease (FAD) pedigrees. In a variety of experimental in vitro and in vivo settings, FAD-linked presenilin variants influence the processing of the amyloid precursor protein (APP), leading to elevated levels of the highly fibrillogenic Aβ1–42 peptides that are preferentially deposited in the brains of Alzheimer Disease (AD) patients. In this report, we demonstrate that transgenic animals that coexpress an FAD-linked human PS1 variant (A246E) and a chimeric mouse/human APP harboring mutations linked to Swedish FAD kindreds (APP swe) develop numerous amyloid deposits much earlier than age-matched mice expressing APP swe and wild-type Hu PS1 or APP swe alone. These results provide evidence for the view that one pathogenic mechanism by which FAD-linked mutant PS1 causes AD is to accelerate the rate of β-amyloid deposition in brain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call