Abstract

This paper extends recent results by the first author and T. Pock (ICG, TU Graz, Austria) on the acceleration of alternating minimization techniques for quadratic plus nonsmooth objectives depending on two variables. We discuss here the strongly convex situation, and how ‘fast’ methods can be derived by adapting the overrelaxation strategy of Nesterov for projected gradient descent. We also investigate slightly more general alternating descent methods, where several descent steps in each variable are alternatively performed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.