Abstract

The aging behaviors and mechanism of fluoroelastomer (FKM) under lubricating oil (FKM-O) and air (FKM-A, as a comparison) at elevated temperatures were studied from both physical and chemical viewpoints. The obvious changes of mechanical and swelling performances indicate that the coupling effect of lubricating oil and temperature causes more serious deterioration of FKM-O compared to that of FKM-A. Meanwhile, much stronger temperature dependence of both bulk properties and micro-structures for FKM-O is found. Three-stage physical diffusion process is defined in FKM-O due to the competition between oil diffusion and elastic retraction of network. FTIR results reveal that the dehydrofluorination reaction causes the fracture of C-F bonds and produces a large number of C-C bonds in the backbone. The coupling effect of oil medium and high temperature could accelerate the scission of C-C bonds and generate a series of fragments with different molecular sizes. The TGA results, crosslinking density Ve, and glass transition temperature Tg derived from different measurements coherently demonstrate the network destruction in the initial stage and the simultaneous reconstruction occurring at the final stage. The newly formed local network induced by reconstruction cannot compensate the break of the original rubber network and thus only provides lower tensile strength and thermal stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.