Abstract

Due to limitations of technology, clinicians are typically unable to determine if human fetuses are normoxic or moderately, chronically hypoxic. Risk factors for chronic hypoxia include fetal growth restriction, which is associated with an increased incidence of oligohydramnios and thus a risk for umbilical cord occlusion (UCO) and variable fetal heart rate (FHR) decelerations. At delivery, fetal growth restriction infants (<3rd percentile) have nearly twice the incidence of low Apgar scores and umbilical pH <7.0. Despite the risks of oligohydramnios and intermittent UCO, there is little understanding of the acid/base responses rates of chronically hypoxic fetuses to variable FHR decelerations as might occur during human labor. We sought to compare the increase in base deficit (BD) among chronically hypoxic as compared to normoxic ovine fetuses in response to simulated mild, moderate, and severe variable FHR decelerations. Near-term ovine fetuses were chronically prepared with brachial artery catheters and an inflatable umbilical cuff occluder. Following a recovery period, normoxic (n = 9) and spontaneously hypoxic (n = 5) fetuses were identified (arterial O2 saturation ≤55%). Both animal groups underwent graded, 1-minute occlusions every 2.5 minutes with 1 hour of mild (∼30 beats/min [bpm] decrease from baseline), 1 hour of moderate (∼60 bpm decrease from baseline), and up to 2 hours of severe (∼90 bpm decrease from baseline) variable FHR decelerations until fetal arterial pH reached 7.00, when occlusions were stopped. Repetitive UCO resulted in development of acidosis (pH <7.0) in both groups. Hypoxic and normoxic fetuses demonstrated similar BD increases in response to both mild (0.39, interquartile range [IQR] 0.28-0.45 vs 0.26, IQR 0.01-0.30 mEq/L/10 min, P = .25) and severe (1.97, IQR 1.50-2.43 vs 1.51, IQR 0.97-2.45 mEq/L/10 min, P = .63) variable decelerations. However, moderate variable decelerations increased BD in hypoxic fetuses at 2.5 times the rate of normoxic fetuses (0.97, IQR 0.52-1.72 vs 0.39, IQR 0.23-0.47 mEq/L/10 min, P = .03). During the recovery period, hypoxic fetuses cleared BD slower than normoxic fetuses (0.08 ± 0.02 vs 0.12 ± 0.03 mEq/L/min, P = .02). In comparison to normoxic fetuses, hypoxic fetuses can more rapidly progress to significant metabolic acidosis in response to moderate FHR variable decelerations, and more slowly recover with in utero resuscitation, likely a consequence of impaired placental function and fetal physiologic responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.