Abstract
Long non-coding RNA(lncRNA) is one of the non-coding RNAs longer than 200 nucleotides and it has no protein encoding function. LncRNA plays a key role in many biological processes. Studying the RNA-binding protein (RBP) binding sites on the lncRNA chain helps to reveal epigenetic and post-transcriptional mechanisms, to explore the physiological and pathological processes of cancer, and to discover new therapeutic breakthroughs. To improve the recognition rate of RBP binding sites and reduce the experimental time and cost, many calculation methods based on domain knowledge to predict RBP binding sites have emerged. However, these prediction methods are independent of nucleotides and do not take into account nucleotide statistics. In this paper, we use a high-order statistical-based encoding scheme, then the encoded lncRNA sequences are fed into a hybrid deep learning architecture named AC-Caps. It consists of a joint processing layer(composed of attention mechanism and convolutional neural network) and a capsule network. The AC-Caps model was evaluated using 31 independent experimental data sets from 12 lncRNA-binding proteins. In experiments, our method achieves excellent performance, with an average area under the curve (AUC) of 0.967 and an average accuracy (ACC) of 92.5%, which are 0.014, 2.3%, 0.261, 28.9%, 0.189, and 21.8% higher than HOCCNNLB, iDeepS, and DeepBind, respectively. The results show that the AC-Caps method can reliably process the large-scale RBP binding site data on the lncRNA chain, and the prediction performance is better than existing deep-learning models. The source code of AC-Caps and the datasets used in this paper are available at https://github.com/JinmiaoS/AC-Caps .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Interdisciplinary sciences, computational life sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.