Abstract

The suppression of pest populations by a predator depends on two basic components of the predator-prey interaction: the functional and the numerical responses of the predator. Such responses can be affected by exposure to acaricides. In the present study, the effects of acaricides (abamectin, azadirachtin, fenpyroximate, and chlorfenapyr) on the functional and numerical responses of the predatory mite, Amblyseius largoensis (Acari: Phytoseiidae) an important natural enemy of the pest mite, Raoiella indica (Acari: Tenuipalpidae), were investigated. The exposure of A. largoensis to acaricides occurred through contact with a surface contaminated with dried acaricide residue. Subsequently, A. largoensis exhibited a type II functional response, which was not altered by exposure of any acaricides. However, exposure to abamectin resulted in a decrease in the average mean numbers of prey consumed by a predator. Exposure to acaricides increased prey handling time by 67%, 25%, 38%, and 35% for abamectin, azadirachtin, fenpyroximate, and chlorfenapyr, respectively. Exposure to abamectin reduced the attack rate of A. largoensis by 52%. The numerical response of A. largoensis was only affected by exposure to abamectin, where just 60% of the females oviposited, and regardless of the prey density, the average mean numbers of eggs/female/day was always less than 0.4. The food conversion efficiency into biomass of A. largoensis eggs decreased with increasing prey density, and this trend was not altered by exposure to any acaricides. However, exposure to abamectin drastically compromised the oviposition of A. largoensis, showing no increase in egg production with increasing prey density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call