Abstract

This study was to evaluate the acaricidal activities of an active compound isolated from Psidium cattleianum and structural analogues against Dermatophagoides farinae and D. pteronyssinus. β-Caryophyllene oxide was isolated using chromatographic techniques. Based on the 50% lethal concentration (LD50) values against D. farinae using the fumigant method, β-caryophyllene oxide (1.36 µg cm(-2)) was ∼ 7.52 times more toxic than benzyl benzoate (10.23 µg cm(-2)), followed by α-caryophyllene (1.75 µg cm(-2)) and β-caryophyllene (3.13 µg cm(-2)). Against D. pteronyssinus, β-caryophyllene oxide (1.38 µg cm(-2)) was ∼ 7.22 times more toxic than benzyl benzoate (9.96 µg cm(-2)), followed by α-caryophyllene (1.71 µg cm(-2)) and β-caryophyllene (3.58 µg cm(-2)). In the contact toxicity method against D. farinae, β-caryophyllene oxide (0.44 µg cm(-2)) was ∼ 17.27 times more active than benzyl benzoate (7.60 µg cm(-2)), followed by α-caryophyllene (0.67 µg cm(-2)) and β-caryophyllene (0.91 µg cm(-2)). Against D. pteronyssinus, β-caryophyllene oxide (0.47 µg cm(-2)) was ∼ 13.06 times more effective than benzyl benzoate (6.14 µg cm(-2)), followed by α-caryophyllene (1.71 µg cm(-2)) and β-caryophyllene (3.58 µg cm(-2)). β-Caryophyllene oxide and structural analogues have potential for development as preventive agents for the control of house dust mites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call