Abstract

Chlorination is a well-known disinfection method, used in water treatment to inactivate various microorganisms, it induces numerous cellular changes. Even though Acanthamoebae are frequently found in water, the cellular changes induced in Acanthamoebae have not been described in the literature. Acanthamoebae are pathogenic amoebae and may provide a reservoir for pathogenic bacteria such as Legionella pneumophila; it is consequently important to understand the response of this amoeba to chlorination, and our study was indeed aimed at examining cellular changes in Acanthamoebae following chlorination. Acanthamoeba trophozoites were treated at various chlorine concentrations (1–5 mg/L). A 3-log reduction in Acanthamoebae population was achieved with 5 mg/L of free chlorine. Confocal microscopy and flow cytometry experiments indicated that chlorination induced cell permeabilization, size reduction and likely intracellular thiol concentration. Our data show that among the non-cultivable cells some remained impermeabilized (negative staining with propidium iodide), thereby suggesting that these cells might remained viable. A similar state is described in other microorganisms as a VBNC (viable but not cultivable) state. Electron microscopy observations illustrate drastic morphological changes: the pseudopods disappeared and subcellular components, such as mitochondrion, were pronouncedly affected. In conclusion, depending on the concentration used, chlorination leads to many cellular effects on Acanthamoeba that could well arise in cell inactivation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.