Abstract

The suppressing effect of acamprosate (calcium-acetyl homotaurinate) on alcohol drinking is well established; however, little is known about its effects upon the alcohol-induced withdrawal syndrome. Male Wistar rats received as a sole drinking fluid a 20% (v/v) alcohol solution for one week. Animals consumed on average 5.3 ± 0.3 g/kg per day alcohol, which resulted in blood alcohol levels of 38 ± 14 mg/dl. For the quantification of alcohol withdrawal we used a new radio-telemetric system which enabled us to monitor body temperature, locomotor activity, food and water intake patterns constantly during alcohol withdrawal. Although alcohol intake and the resulting blood alcohol levels were low, clear signs of withdrawal could be observed. Thus, hyperthermia and hyperlocomotion occurred 18 h after the termination of forced alcohol drinking. Food intake was initially enhanced but dropped significantly below basal food intake in control animals one day after the termination of forced alcohol drinking. Acamprosate given twice a day (200 mg/kg, i.p., 8 a.m. and 8 p.m.) reduced hyperlocomotion and food intake significantly in the alcohol withdrawal animals, however, it did not change withdrawal-induced hyperthermia. When acamprosate was given to alcohol-naive animals, it increased locomotor activity and body temperature transiently, in particular during the rats' active night phase. In summary, (i) the radio-telemetric system used in the present study proved to be a very sensitive method for quantifying alcohol-induced withdrawal symptoms; (ii) acamprosate reduced alcohol-induced physical signs of withdrawal, however, this effect could not be observed for all parameters measured, which might be explained by the fact that (iii) acamprosate exerts a slight, transient psychomotor stimulant effects by itself.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.