Abstract
Human hepatocellular carcinoma (HCC) is the fifth most common cancer and the third leading cause of death across the world. Recent evidence suggests that STAT3 regulates proliferative, survival, metastasis, and angiogenesis genes in HCC. Novel agents that suppress STAT3 activation can be used to prevent or treat HCC. We used a functional proteomics tumor pathway technology platform and multiple HCC cell lines to investigate the effects of acacetin (ACN) on STAT3 activation, protein kinases, phosphatases, products of STAT3-regulated genes, and apoptosis. ACN was found to inhibit STAT3 activation in a dose- and time-dependent manner in HCC cells. Upstream kinases c-Src, Janus-activated kinase 1, and Janus-activated kinase 2 were also inhibited. The ACN inhibition of STAT3 was abolished by vanadate treatment, suggesting the involvement of tyrosine phosphatase activity. ACN was found to suppress the protein expression of genes involved in proliferation, survival, and angiogenesis via STAT3 inhibition. ACN appears to be a novel STAT3 inhibitor and may be a promising therapeutic compound for application in the treatment of HCC and other cancers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.