Abstract

We have demonstrated that the natural flavone acacetin selectively inhibits ultra-rapid delayed rectifier potassium current (IKur) in human atria. However, molecular determinants of this ion channel blocker are unknown. The present study was designed to investigate the molecular determinants underlying the ability of acacetin to block hKv1.5 channels (coding IKur) in human atrial myocytes using the whole-cell patch voltage-clamp technique to record membrane current in HEK 293 cells stably expressing the hKv1.5 gene or transiently expressing mutant hKv1.5 genes generated by site-directed mutagenesis. It was found that acacetin blocked hKv1.5 channels by binding to both closed and open channels. The blockade of hKv1.5 channels by acacetin was use- and frequency-dependent, and the IC50 of acacetin for inhibiting hKv1.5 was 3.5, 3.1, 2.9, 2.1, and 1.7μM, respectively, at 0.2, 0.5, 1, 3, and 4Hz. The mutagenesis study showed that the hKv1.5 mutants V505A, I508A, and V512A in the S6-segment remarkably reduced the channel blocking properties by acacetin (IC50, 29.5μM for V505A, 19.1μM for I508A, and 6.9μM for V512A). These results demonstrate the novel information that acacetin mainly blocks open hKv1.5 channels by binding to their S6 domain. The use- and rate-dependent blocking of hKv1.5 by acacetin is beneficial for anti-atrial fibrillation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.