Abstract

This paper has investigated a method for calculating the frequency-dependent winding resistance of toroidal inductor windings with Litz-wire as well as solid-round wire. The modified Dowell’s model is employed to address the effectiveness for inductor windings with the low and high filling factors. To overcome the limitation of this model, especially for a winding densely wound around the core, an alternative approach based on the complex permeability and iterative calculations is proposed. For the calculated AC-resistance factor of five inductors with different numbers of turns, layers with the same wire diameters are compared with that of FEA, and the three air-core toroidal windings are manufactured and tested within the frequency where the self-resonance can be neglected. The proposed model demonstrates the versality of the AC-resistance calculation of both solid- and Litz-wire windings within an error of 15% across a wide range of frequencies up to 1 MHz, compared with FEA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.