Abstract

Interest to studies of gallium alloys increased recently in relation to their prospective applications for self-healing superconducting connections and wires. Special attention is focused on superconductive properties of nanostructured alloys. In the present work we studied the ac susceptibility of a porous glass/Ga-In-Sn nanocomposite within the temperature range from 1.9 to 8 K at bias fields up to 5 T. Two superconducting phase transitions were revealed with temperatures of 5.6 and 3.1 K. Phase diagrams were created. Positive curvature of the parts of critical lines was demonstrated and treated within the framework of a proximity effect model. Vortex activation barriers were found from shifts of the maxima of the imaginary parts of susceptibility with changing the ac frequency. A bend was shown on the field dependence of the activation barriers. Keywords: Ga-In-Sn triple alloy, nanocomposite, superconductivity, magnetometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.