Abstract

An AC stress test was performed to investigate the accompanying electronic effects in a HfO2 resistive random access memory during the SET transition, which featured a sudden decrease in resistance. Comparing the DC and AC measurement results indicated the pronounced influence of interrupted stress on both the mean values and variations of time to SET. First-principles calculations suggested that the charge states (+2, +1, or neutral) of oxygen vacancies affect the migration barrier for forming oxygen vacancy clusters. Therefore, a charge-state-dependent SET model is proposed to include the additional electronic effects induced by the dynamics of electron trapping and detrapping in oxygen vacancies during AC stress. A trimodal Weibull fitting based on the proposed model reproduced the experimental time to SET distributions obtained in a wide range of AC stress conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.