Abstract

A novel model was developed to evaluate gap coupling coefficient considering ac-space-charge effects due to the bunching in the interaction gap. The formulation was derived based on Webster's debunching theory and the electron-stream oscillation equation with arbitrary gap field distribution on the gridless gap. The coupling coefficient with ac-space-charge effects was investigated through both analysis and particle-in-cell simulation. The calculation results are in reasonable agreement with the simulation results. With the ac-space-charge effects, the coupling coefficient is lower than that calculated by ballistic theory. It is found that the plasma gap transit angle is a key factor in the effects of ac space charge on the coupling coefficient. Large beam current or gap length and, hence, mean large plasma transit angle indicate strong ac-space-charge effects on the coupling coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.