Abstract

A linear ac response theory of an electron gas under a strong, static electric field ([bold E]) is presented, and applied to doped GaAs for a detailed calculation. This is a generalization of the force-balance transport equation developed by Ting [ital et] [ital al]., with which the nonlinear conductivity under a strong field can be studied. The dynamic screening effect is included in the theory and studied analytically. The result is expressed by a modified Drude formula, with an effective lifetime which is a function of the frequency and also of [bold E]---both its magnitude and its direction. The calculated optical reflectivity and absorption rate show anomalous structure at frequencies close to the plasmon oscillation, when the nonlinear dc effect due to a strong [bold E] is important. The anomaly is expected to be experimentally measurable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.