Abstract

We describe an alternating current method to measure the Nernst effect in superconducting thin films at low temperatures. The Nernst effect is an important tool in the understanding of superconducting fluctuations and, in particular, vortex motion near critical points. However, in most materials, the Nernst signal in a typical experimental setup rarely exceeds a few μV, in some cases being as low as a few nV. DC measurements of such small signals require extensive signal processing and protection against stray pickups and offsets, limiting the sensitivity of such measurements to >1 nV. Here, we describe a method utilizing a one-heater-two-thermometer setup with the heating element and thermometers fabricated on-chip with the sample, which helped to reduce the thermal load and temperature lag between the substrate and the thermometer. Using AC heating power and 2ω measurement, we are able to achieve sub-nanovolt sensitivity in 20 nm-30 nm thin superconducting films on a glass substrate, compared to a sensitivity of ∼10 nV using DC techniques on the same setup.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call