Abstract

We fabricated a 1 T cryocooler-cooled oxide superconducting pulsed coil. It is a 16-layer solenoidal coil wound with an interlayer-transposed 4-strand parallel conductor composed of Bi-2223 multifilamentary flat wires. The insulated strands were transposed only between layers to make all strands inductively equivalent. To suppress the temperature rise due to the AC loss, the aluminum nitride (AlN) plates were arranged between layers as heat drains. The pulsed coil was cooled down to 30 K by a single stage cryocooler. It can be operated continuously at 40 K in the 1 T triangular wave operation at 1 Hz. First we studied the temperature dependence of thermal runaway current of the coil under the application of direct transport current. The runaway current was higher than the critical current, which was defined as the current where the electric field of 10/sup minus;4/ V/m was generated on average over the whole length of the conductor. Next we studied the temperature variation of the coil in a sinusoidal operation of 1 Hz. The temperature increment was much more gradual than that in the DC operation. In this paper, we discuss the thermal properties of the cryocooler-cooled oxide superconducting pulsed coil, taking into account the heat generation of AC loss and flux-flow loss and the cooling capacity of a cryocooler.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.