Abstract

In the present investigation, holographic interferometry was utilised for the first time to determine the rate change of the alternating current (AC) impedance of aluminium samples during the initial stage of anodisation processes in aqueous solution without any physical contact. In fact, because the AC impedance values in this investigation were obtained by holographic interferometry, electromagnetic method rather than electronic method, the abrupt rate change of the AC impedance was called AC impedance–emission spectroscopy. The anodisation process (oxidation) of the aluminium samples was carried out chemically in different sulphuric acid concentrations (0.5–3.125% H2SO4) at room temperature. In the mean time, the real time holographic interferometry was used to determine the difference in the AC impedance of two subsequent values, dZ, as a function of the elapsed time of the experiment for the aluminium samples in 0. 5, 1.0, 1.5 and 3.125% H2SO4 solutions. The AC impedance–emission spectra of the present investigation represent a detailed picture of not only the rate change of the AC impedance throughout the anodisation processes but also the spectra represent the rate change of the growth of the oxide films on the aluminium samples in different solutions. Consequently, holographic interferometry is found to be very useful for surface finish industries, especially for monitoring the early stage of anodisation processes of metals, in which the rate change of AC impedance of the aluminium samples can be determined in situ.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.