Abstract
We present a new application of a hot wire sensor for simultaneous and independent measurement of thermal conductivity k and diffusivity α of (nano)fluids, based on a hot wire thermal probe with ac excitation and 3 ω lock-in detection. The theoretical modeling of imaginary part of the signal yields the k value while the phase yields the α value. Due to modulated heat flow in cylindrical geometry with a radius comparable to the thermal diffusion length, the necessary sample quantity is kept very low, typically 25μl. In the case of relative measurements, the resolution is 0.1% in k and 0.3% in α. Measurements of water-based Aerosil 200V nanofluids indicate that ultrasound treatment is more efficient than high pressure dispersion method in enhancing their thermal parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.