Abstract

The complex mobility of electrons in 3C - and 6H-SiC subjected to intense high frequency electric fields is calculated taking into account effects of band nonparabolicity. The electric field, given by a dc component plus an ac component in the frequency range 0.1-100 THz, is applied along the [0001] ([111]) direction in the hexagonal (cubic) polytype. The real electron mobility presents a characteristic maximum peaking around 6-8 THz, while the imaginary electron mobility is structured, with characteristic minimum and maximum around 2-3 THz and 20{30 THz, respectively. These mobilities are seen to smooth down for higher temperatures in both polytypes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.