Abstract

Understanding spatiotemporal organization in bacteria under an external AC electric field is not only very interesting from a perspective of studying assembly and disassembly in a model biofilm but also provides insight into the intricate role of anisotropic interaction with bacterial dynamics that can generate interesting complex structures. In the current study, using confocal microscopy, we demonstrate such complex assemblies of monodisperse tetrad clusters of Micrococcus luteus, an environmental bacterium synthesized under a controlled growth condition. These clusters under the AC field produce a range of interesting structures such as chains, double helix, and bundles, which are instantaneously reversible when the field is switched off. Our studies can provide important insights into the natural organization of the clustered bacterium (with relevance in biofilm-like states) and generate strategies for biomaterial fabrication with a switchable functionality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.