Abstract

AbstractIn this article, we describe an efficient physical electric‐field‐assisted method to study self‐assembly and orientation of cellulose nanocrystals. When applying an alternating voltage to a cellulose nanocrystals suspension deposited onto a thin gap of coplanar lithographically patterned metallic electrodes, a highly homogeneous orientation of cellulose nanocrystals is obtained. Parameters such as strength and frequency of the applied electric field and cellulose nanocrystals aspect ratios were studied to determine how they affect cellulose nanocrystals assembly and orientation. The prepared films were analyzed by atomic force microscopy, and the results suggest that the alignment of cellulose nanocrystals generated films is greatly influenced by the frequency and the strength of the applied electric field. The orientation of cellulose nanocrystals becomes more homogeneous with increasing electric field higher than 2000 V/cm with a frequency ranging between 104 and 106 Hz. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1430–1436, 2008

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.