Abstract

AC conductivity, dielectric property, and electric modulus formalism of lithium molybdenum tellurite glasses containing vanadium with compositions 30Li2O–4MoO3–(66–x)TeO2–xV2O5 (x = 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2) have been studied in the frequency range 10−2 Hz to 1 MHz and temperature range 323–413 K to investigate the effects of mixed ionic–electronic carriers in the glasses. The variation of AC conductivity with V2O5 showed a nonlinear increase for x ≤ 0.6 mol% before decreasing to a minimum at 0.8 mol% V2O5. The decrease in σ AC attributed to some forms of blocking effect on Li+ ions caused by the mixed ionic–electronic (MIE) effect. Meanwhile, dielectric constant showed a general increase for x ≤ 0.6 before an anomalous decrease at x = 0.8 mol% V2O5, which was followed by a large increase at x > 0.8 mol%. The decrease at x = 0.8 mol% coincided with the σ AC drop at the same location. This decrease was also suggested related to the MIE that induced a blocking effect, which caused the restricted dipole movement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.