Abstract

Sr1–xCaxBi4Ti4O15 [x = 0, 0.2, 0.4, 0.6, 0.8] ceramics are synthesized by solid-state reactive technique. Structural analyses are done by x-ray diffraction data. Morphological studies were carried out by scanning electron microscope, and the data showed plate-like structures. To understand the conductivity mechanism, frequency and temperature dependency of AC and DC conductivity studies are carried out. The conductivity measurements are done using an impedance analyzer (Wayn–Kerr) in the temperature range 100–600°C. The frequency-dependent AC conductivity at different temperatures indicates that the conduction process follows the universal power law, and the hopping frequency shifts toward higher frequency side with increase in temperature, below which the conductivity is frequency independent. The variation of DC conductivity confirms that the ceramics exhibit negative temperature coefficient of resistance behavior at high temperature. DC conductivity values do not show any linearity with doping concentration; for a particular composition SCBT06, the DC conductivity was low.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.