Abstract

AbstractA buoyancy and volume budget analysis of bottom-intensified mixing in the abyssal ocean reveals simple expressions for the strong upwelling in very thin continental boundary layers and the interior near-boundary downwelling in the stratified ocean interior. For a given amount of Antarctic Bottom Water that is upwelled through neutral density surfaces in the abyssal ocean (between 2000 and 5000 m), up to 5 times this volume flux is upwelled in narrow, turbulent, sloping bottom boundary layers, while up to 4 times the net upward volume transport of Bottom Water flows downward across isopycnals in the near-boundary stratified ocean interior. These ratios are a direct result of a buoyancy budget with respect to buoyancy surfaces, and these ratios are calculated from knowledge of the stratification in the abyss along with the assumed e-folding height that characterizes the decrease of the magnitude of the turbulent diapycnal buoyancy flux away from the seafloor. These strong diapycnal upward and downward volume transports are confined to a few hundred kilometers of the continental boundaries, with no appreciable diapycnal motion in the bulk of the interior ocean.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.