Abstract

In this paper, we use the generalized exponential rational function approach (GERFA) for constructing new solitary wave solutions for the fractional Kraenkel Manna Merle (FKMM) model, which is saturated ferromagnetic materials (MF) with a field outside that has very little conductivity, reflects the nonlinear of an ultrashort pulse. The proportional behavior of the suggested model is examined using the beta-derivative (BD). Through the use of this computational method, multiple types of solitons, such as kink, dark, anti-kink, periodic, bright, kink dark, kink bright, anti-kink dark, and anti-kink bright solitons, were obtained for (FKMM). Some of the revealed solutions’ 3D graphs are also employed in the numerical simulations. This investigation demonstrates the efficacy and simplicity of the offered strategy and the simple way to create many new solutions for different kinds of nonlinear partial differential equations, which have significant applications in the engineering and applied sciences. The findings show that the model theoretically has extraordinarily rich soliton structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.