Abstract

We explore dynamical features of lump solutions as diversion and propagation in the space. Through the Hirota bilinear method and the Cole-Hopf transformation, lump-type solutions and their interaction solutions with one- or two-stripe solutions have been generated for a generalized (3+1) shallow water-like (SWL) equation, via symbolic computations associated with three different ansatzes. The analyticity and localization of the resulting solutions in the (x,y,z, and t) space have been analyzed. Three-dimensional plots and contour plots are made for some special cases of the solutions to illustrate physical motions and peak dynamics of lump soliton waves in higher dimensions. The study of lump-type solutions moderates the visuality of optics media and oceanography waves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.