Abstract

Transmembrane alpha-amino-3-hydroxyl-5-isoxazolepropionate (AMPA) receptor regulatory proteins (TARPs) play pivotal roles in AMPA receptor trafficking and gating. Here we examined cellular and subcellular distribution of TARP gamma-8 in the mouse brain. Immunoblot and immunofluorescence revealed the highest concentration of gamma-8 in the hippocampus. Immunogold electron microscopy demonstrated dense distribution of gamma-8 on the synaptic and extrasynaptic surface of hippocampal neurons with very low intracellular labeling. Of the neuronal surface, gamma-8 was distributed at the highest level on asymmetrical synapses of pyramidal cells and interneurons, whereas their symmetrical synapses selectively lacked immunogold labeling. Then, the role of gamma-8 in AMPA receptor expression was pursued in the hippocampus using mutant mice defective in the gamma-8 gene. In the mutant cornu ammonis (CA)1 region, synaptic and extrasynaptic AMPA receptors on dendrites and spines were severely reduced to 35-37% of control levels, whereas reduction was mild for extrasynaptic receptors on somata (74%) and no significant decrease was seen for intracellular receptors within spines. In the mutant CA3 region, synaptic AMPA receptors were reduced mildly at asymmetrical synapses in the stratum radiatum (67% of control level), and showed no significant decrease at mossy fiber-CA3 synapses. Therefore, gamma-8 is abundantly distributed on hippocampal excitatory synapses and extrasynaptic membranes, and plays an important role in increasing the number of synaptic and extrasynaptic AMPA receptors on dendrites and spines, particularly, in the CA1 region. Variable degrees of reduction further suggest that other TARPs may also mediate this function at different potencies depending on hippocampal subregions, input sources and neuronal compartments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.