Abstract

Context. Studies of the element abundances and kinematics of stars belonging to the Galactic halo have revealed the existence of two distinct populations: accreted stars with a low [α/Fe] ratio and in situ born stars with a higher ratio. Aims. Previous work on the abundances of C, O, Na, Mg, Si, Ca, Ti, Cr, Mn, Fe, Ni, Cu, and Zn in high-α and low-α halo stars is extended to include the abundances of Sc, V, and Co, enabling us to study the nucleosynthesis of all iron-peak elements along with the lighter elements. Methods. The Sc, V, and Co abundances were determined from a 1D MARCS model-atmosphere analysis of equivalent widths of atomic lines in high signal-to-noise, high resolution spectra assuming local thermodynamic equilibrium (LTE). In addition, new 3D and/or non-LTE calculations were used to correct the 1D LTE abundances for several elements including consistent 3D non-LTE calculations for Mg. Results. The two populations of accreted and in situ born stars are well separated in diagrams showing [Sc/Fe], [V/Fe], and [Co/Fe] as a function of [Fe/H]. The [X/Mg] versus [Mg/H] trends for high-α and low-α stars were used to determine the yields of core-collapse and Type Ia supernovae. The largest Type Ia contribution occurs for Cr, Mn, and Fe, whereas Cu is a pure core-collapse element. Sc, Ti, V, Co, Ni, and Zn represent intermediate cases. A comparison with yields calculated for supernova models shows poor agreement for the core-collapse yields. The Ia yields suggest that sub-Chandrasekhar-mass Type Ia supernovae provide a dominant contribution to the chemical evolution of the host galaxies of the low-α stars. A substructure in the abundances and kinematics of the low-α stars suggests that they arise from at least two different satellite accretion events, Gaia-Sausage-Enceladus and Thamnos.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call