Abstract
Abstract This statistical work studies the abundances and the charge states of the carbon, oxygen, and iron ions in 281 interplanetary coronal mass ejections (ICMEs) measured at 1 au by ACE spacecraft from 1998 to 2011. The Gaussian distribution test is applied, and the analysis of variance is used to quantify the similarity between two distributions of ionic charge states and abundances. The correlation coefficient is calculated to reveal the dependence of the abundances and the mean charge of heavy ions on the solar activity. The results show that the mean charge, the abundance, and the speed at 1 au are highly related to the sunspot number (SN). The O7+/O6+ shows statistical difference between the high speed and the low speed groups of ICMEs. Different from the cold materials inside ICMEs, the mean charge of carbon ions shows a positive relation to that of oxygen ions. The Mg/O in the studied ICMEs are much higher than that in the solar wind. Three types of charge distribution of C, O, and Fe ions are summarized. The fraction of each of the three types is related to the solar minimum or the solar maximum. The mean charge and the flux of oxygen ions show quasi-linear relations to the SN during solar minimum, and show fluctuations during maximum. The results reveal that the solar activity, which represents the solar magnetic field status by nature, controls the composition of heavy ions in ICMEs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.