Abstract

In the absence of pipe-borne water, many people in Africa, especially in rural communities, depend on alternative water sources such as wells, boreholes and rivers for household and personal hygiene. Poor maintenance and nearby pit latrines, however, lead to microbial pollution of these sources. We evaluated the abundance of Escherichia coli and the prevalence of pathogenic E. coli virulence genes in water from wells, boreholes and a river in a South African peri-urban community. Monthly samples were collected between August 2015 and November 2016. In all, 144 water samples were analysed for E. coli using the Colilert 18 system. Virulence genes (eagg, eaeA, stx1, stx2, flichH7, ST, ipaH, ibeA) were investigated using real-time polymerase chain reaction. Mean E. coli counts ranged between 0 and 443.1 Most Probable Number (MPN)/100 mL of water sample. Overall, 99.3% of samples were positive for at least one virulence gene studied, with flicH7 being the most detected gene (81/140; 57.6%) and the stx2 gene the least detected gene (8/140; 5.7%). Both intestinal and extraintestinal pathogenic E. coli genes were detected. The detection of virulence genes in these water sources suggests the presence of potentially pathogenic E. coli strains and is a public health concern.

Highlights

  • The Millennium Development Goals’ (MDGs) target for drinking water supply was globally exceeded, this was not the case in the African region [1]

  • The construction of these pit latrines uphill from, and in close proximity to, water sources leads to the pollution of these water sources through leaching [5]

  • As municipal water deliveries are often sporadic, many residents habitually rely on water obtained from hand-dug wells or boreholes in their yards or other communal areas

Read more

Summary

Introduction

The Millennium Development Goals’ (MDGs) target for drinking water supply was globally exceeded, this was not the case in the African region [1]. Unlike the exceeded target for access to safe drinking water, access to improved sanitation was not met globally, and in the African region, only 7% of the targeted 50% reduction in people without access to improved sanitation was achieved [1]. The construction of these pit latrines uphill from, and in close proximity to, water sources leads to the pollution of these water sources through leaching [5]. These pollutants could include chemicals such as pharmaceuticals [6] and pathogenic microorganisms [7]. These microorganisms which include bacteria, viruses and parasites, have been

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.