Abstract

To understand the role of denitrifying microbes during vegetation recovery in karst regions, we determined the basic physicochemical properties and abundance of denitrifying microbial functional genes (nirS, nirK, fungal nirK, p450nor, and nosZ) of 13 collected soil samples under three land use types (cropland, grassland, and plantation) in Northwest Guangxi, and investigated the changes in the abundance of denitrifying microbial functional genes and their driving factors. Results showed that soil pH, soil organic carbon, total nitrogen (TN), and exchangeable calcium (Caexe) in plantation soil were significantly higher than those in cropland and grassland. The abundance of nirS, nirK, p450nor, and nosZ in plantation soil were significantly higher than those in cropland and grassland. Soil pH, TN, and Caexe were positively correlated with the abundance of denitrifying functional genes nirS, nirK, and p450nor. Results of redundancy analysis showed that soil Caexe, pH and TN were the primary factors influencing the abundance of denitrifying functional genes, which accounted for 34.1%, 20.1%, and 16.1% of the total variation, respectively. Such a result suggested that Caexe was the main driver of changes in denitrifying functional genes under different land use types. Overall, vegetation restoration (plantation) could effectively increase soil denitrifying microbe genes abundance in the karst region of Northwest Guangxi, and consequently influence soil nitrogen cycling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call