Abstract
BackgroundThroughout the world, intensive dairy farming has resulted in grasslands almost devoid of arthropods and birds. Meadow birds appear to be especially vulnerable during the chick-rearing period. So far, studies have focused mainly on describing population declines, but solutions to effectively stop these trends on the short-term are lacking. In this study at a single farm, we experimentally manipulated soil moisture through occasional irrigation, to mitigate against early season drainage and create favorable conditions for the emergence of above-ground arthropods during the meadow bird chick rearing phase.MethodsTo guarantee the presence of at least a sizeable arthropod community for the measurement of effects of wetting, we selected a farm with low intensity management. The land use and intensity of the study site and surroundings were categorized according to the national land use database and quantified using remote sensing imagery. From May 1 to June 18, 2017, we compared a control situation, with no water added, to two wetting treatments, a “short-term” (3 weeks) treatment based on wetting on warm days with a sprinkler system and a “long-term” treatment next to a water pond with a consistently raised water table from 2010. We measured soil temperature, soil moisture and resistance as well as the biomass of arthropods at 3-day intervals. Flying arthropods were sampled by sticky traps and crawling arthropods by pitfall traps. Individual arthropods were identified to Order and their length recorded, to assess their relevance to meadow bird chicks.ResultsThe land use analysis confirmed that the selected dairy farm had very low intensity management. This was different from most of the surrounding area (20 km radius), characterized by (very) high intensity land use. The experiments showed that irrigation contributed to cooler soils during midday, and that his happened already in the early part of the season; the differences with the control increased with time. In the short- and long-term treatments, soil moisture increased and soil resistance decreased from the mid-measurement period onward. Compared with the control, cumulative arthropod biomass was higher in the long-term treatment, but showed no change in the irrigation treatment. We conclude that small-scale interventions, such as occasional irrigation, favorably affected local soil properties. However, the effects on above-ground arthropod abundance currently appear limited or overridden by negative landscape-scale processes on arthropods.
Highlights
Post-war agricultural intensification of agriculture has negatively altered the ecology of rural landscapes (Newton, 2004, 2017)
Since the irrigation only started at the beginning of the breeding season, it is possible that the beneficial effects of the irrigation on arthropods biomass would only have become evident after the sampling period, when the eggs and larvae that were in the soil during the experiment would have hatched and emerged
In any case, such delayed effects of the irrigation on arthropod biomass would not have benefitted meadow bird chicks, growing up during the short window of time covered by our sprinkler treatment (Kentie et al, 2018; Loonstra, Verhoeven & Piersma, 2018)
Summary
Post-war agricultural intensification of agriculture has negatively altered the ecology of rural landscapes (Newton, 2004, 2017). Herb-rich meadows were replaced by monocultures, foot drains (shallow surface drainage ditches) by underground drainage pipes, while increased grazing pressure and the heavy use of machinery led to the degradation of soil structure and natural soil renewal processes; this resulted in hard dry top soils with low fertility and biodiversity (Roach & Campbell, 1983; EASAC Secretariat, 2018). These changes were correlated with ongoing declines of arthropods. We conclude that small-scale interventions, such as occasional irrigation, favorably affected local soil properties
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.