Abstract
Atmospheric organic aerosol (OA) are considered as a significant contributor to the light absorption of OA, but its relationship with abundance, composition and sources are not understood well. In this study, the abundance, chemical structural characteristics, and light absorption property of HULIS and other low-to-high polar organics in PM0.95 collected in Tomakomai Experimental Forest (TOEF) were investigated with consideration of their possible sources. HULIS were the most abundant (51%), and correlation analysis revealed that biogenic secondary organic aerosols significantly contribute to HULIS. The mass spectra obtained using a high-resolution aerosol mass spectrometer (HR-AMS) showed that HULIS and highly polar water-soluble organic matter (HP-WSOM) were substantially oxygenated organic aerosol fractions, whereas water-insoluble organic matter (WISOM) had a low O/C ratio and more hydrocarbon-like structures. The WISOM fraction was the predominant light-absorbing organics. HULIS and WISOM showed a noticeable seasonal change in mass absorption efficiency (MAE365), which was highest in winter. Further, HULIS were shown to be less absorbing than those reported for urban sites. The findings in this study provide insights into the contribution of biogenic secondary OA on aerosol property and radiative forcing under varying contributions from other types of OA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.