Abstract

Polystyrene foam is widely used due to its lightweight, impact resistance, and excellent thermal insulation properties. Meanwhile, weak adhesion between beads in polystyrene foam leads to fragmentation, generating a substantial amount of microplastics (<5 mm). Such polystyrene foam debris littered on beaches diminishes the aesthetic value of coastal areas, negatively impacting tourism. Due to its density lower than other plastics, polystyrene foam macroplastics float on the sea surface and, thus, they are significantly influenced by wind drag during oceanic transport. In contrast, polystyrene foam microplastics drifting beneath the sea surface are carried mostly by ocean currents. These properties of polystyrene foam macroplastics and microplastics hinder the elucidation of their transport, distribution, and fate in nature, despite their potential to adversely impact marine ecosystems. To elucidate the generation, transport, and fragmentation processes of polystyrene foam ocean plastics, we conducted concurrent visual observations and surface net towing from seven training vessels around Japan during 2014–2020. Overall, the abundances of polystyrene foam ocean plastics were higher in the Sea of Japan than in the North Pacific south of Japan. The average abundances of polystyrene foam microplastics and macroplastics were 0.33 pieces/m3 and 0.45 pieces/km, respectively, over the entire sea area around Japan. In the Sea of Japan, the peak abundances of polystyrene foam macroplastics occurred in upstream of the Tsushima Current, while the peak for microplastics occurred downstream, suggesting that continuous fragmentation occurred during transport between the two peaks. Backward-in-time particle tracking model experiments suggested that the sources of polystyrene foam macroplastics observed in the Sea of Japan included aquaculture buoys and styrene debris beached around the Tsushima Strait. The present study demonstrated that reducing the release of polystyrene foam aquaculture floats will likely diminish the abundance of ocean plastics in the Sea of Japan.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.