Abstract

BackgroundThe cellulosome is a multi-enzyme machine, which plays a key role in the breakdown of plant cell walls in many anaerobic cellulose-degrading microorganisms. Ruminococcus flavefaciens FD-1, a major fiber-degrading bacterium present in the gut of herbivores, has the most intricate cellulosomal organization thus far described. Cellulosome complexes are assembled through high-affinity cohesin-dockerin interactions. More than two-hundred dockerin-containing proteins have been identified in the R. flavefaciens genome, yet the reason for the expansion of these crucial cellulosomal components is yet unknown.Methodology/Principal FindingsWe have explored the full spectrum of 222 dockerin-containing proteins potentially involved in the assembly of cellulosome-like complexes of R. flavefaciens. Bioinformatic analysis of the various dockerin modules showed distinctive conservation patterns within their two Ca2+-binding repeats and their flanking regions. Thus, we established the conceptual framework for six major groups of dockerin types, according to their unique sequence features. Within this framework, the modular architecture of the parent proteins, some of which are multi-functional proteins, was evaluated together with their gene expression levels. Specific dockerin types were found to be associated with selected groups of functional components, such as carbohydrate-binding modules, numerous peptidases, and/or carbohydrate-active enzymes. In addition, members of other dockerin groups were linked to structural proteins, e.g., cohesin-containing proteins, belonging to the scaffoldins.Conclusions/SignificanceThis report profiles the abundance and sequence diversity of the R. flavefaciens FD-1 dockerins, and provides the molecular basis for future understanding of the potential for a wide array of cohesin-dockerin specificities. Conserved differences between dockerins may be reflected in their stability, function or expression within the context of the parent protein, in response to their role in the rumen environment.

Highlights

  • Cellulolytic ruminococci play a major role in the breakdown of plant cell wall material in the rumen and in the hindgut of mammals [1,2,3,4,5]

  • Recent work on two Ruminococcus flavefaciens strains, 17 and FD-1 has revealed a cellulosomal type of enzyme complex, in which a number of the known hydrolytic enzymes have been shown to associate with scaffolding proteins ScaA and ScaB, via specific cohesin-dockerin interactions [17,18,19,20]

  • We report an analysis of an unprecedented number of dockerin sequences and their flanking regions that have been detected in the R. flavefaciens FD-1 draft genome

Read more

Summary

Introduction

Cellulolytic ruminococci play a major role in the breakdown of plant cell wall material in the rumen and in the hindgut of mammals [1,2,3,4,5]. Recent work on two Ruminococcus flavefaciens strains, 17 and FD-1 has revealed a cellulosomal type of enzyme complex, in which a number of the known hydrolytic enzymes have been shown to associate with scaffolding proteins ScaA and ScaB, via specific cohesin-dockerin interactions [17,18,19,20]. Not all types of dockerins found in enzymes from R. flavefaciens interact with ScaA or ScaB, and there are indications that additional cohesin-dockerin specificities and additional scaffolding proteins are involved in assembling these enzymes into complexes [19]. More than two-hundred dockerin-containing proteins have been identified in the R. flavefaciens genome, yet the reason for the expansion of these crucial cellulosomal components is yet unknown

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call