Abstract

Microorganisms have developed copper-resistance mechanisms in order to survive in contaminated environments. The abundance of the copper-resistance genes cusA and copA, encoding respectively for a Resistance Cell Nodulation protein and for a P-type ATP-ase pump, was assessed in copper and non-copper-impacted Chilean marine sediment cores by the use of molecular tools. We demonstrated that number of copA and cusA genes per bacterial cell was higher in the contaminated sediment, and that copA gene was more abundant than cusA gene in the impacted sediment. The molecular phylogeny of the two copper-resistance genes was studied and reveals an impact of copper on the genetic composition of copA and cusA genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call