Abstract

are-earth (REE) and yttrium abundances were determined, by an ion-exchange-X-ray fluorescence procedure, for whole-rock (14) and mineral (87) samples from the Oka carbonatite complex. Whole-rock and mineral data indicate a trend of total REE + Y enrichment, and relative enrichment in light REE, in the order: ultrafenites < ijolites < okaites. The sövites may show wide variations in total REE + Y concentrations, but relative REE abundance patterns will be similar. The greatest REE and Y concentrations occur in apatite, niocalite, perovskite and pyrochlore. Many of the minerals show europium anomalies (both positive and negative), and these are believed to be the result of closed system competition between the various minerals for divalent Eu. The partition coefficients for mineral pairs are quite variable, indicating that the Oka rocks were emplaced through a wide-range of physicochemical and/or nonequilibrium conditions. A reasonable model for the origin of the complex involves a limited partial melting of mantle material, emplacement of the melt in a magma chamber, crystallization of mafic minerals resulting in a residual liquid which produced ijolite and subsequently okaite, and crystallization of the carbonatites from a volatile-rich, possibly immiscible, phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.