Abstract

In the current study, we studied the potential role of ABT-737, a novel Bcl-2 inhibitor, on curcumin-induced anti-melanoma cell activity in vitro. The associated mechanisms were also investigated. We demonstrated that ABT-737 significantly sensitized curcumin-induced activity against melanoma cells (WM-115 and B16 lines), resulting in substantial cell death and apoptosis with co-administration. At the molecular level, curcumin and ABT-737 synergistically induced mitochondrial permeability transition pore (mPTP) opening in melanoma cells, the latter was evidenced by mitochondrial membrane potential (MPP) reduction and mitochondrial complexation between cyclophilin-D (CyPD) and adenine nucleotide translocator 1 (ANT-1). Significantly, mPTP blockers, including cyclosporin A and sanglifehrin A, remarkably inhibited curcumin and ABT-737 co-administration-induced cytotoxicity against melanoma cells. Meanwhile, siRNA-mediated knockdown of CyPD or ANT-1, the two key components of mPTP, alleviated WM-116 cell death by the co-treatment. Collectively, we show that ABT-737 sensitizes curcumin-induced anti-melanoma cell activity probably through facilitating mPTP death pathway. ABT-737 could be further investigated as a potential curcumin adjuvant in melanoma and other cancer treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call